Micropatterned structures for studying the mechanics of biological polymers.
نویسندگان
چکیده
Studying the mechanics of nanometer-scale biomolecules presents many challenges; these include maintaining light microscopy image quality and avoiding interference with the laser used for mechanical manipulation, that is, optical tweezers. Studying the pushing forces of a polymerizing filament requires barriers that meet these requirements and that can impede and restrain nanoscale structures subject to rapid thermal movements. We present a flexible technique that meets these criteria, allowing complex barrier geometries with undercut sidewall profiles to be produced on #1 cover glass for the purpose of obstructing and constraining polymerizing filaments, particularly microtubules. Using a two-layer lithographic process we are able to separate the construction of the primary features from the construction of a depth and shape-controlled undercut. The process can also be extended to create a large uniform gap between an SU-8 photoresist layer and the glass substrate. This technique can be easily scaled to produce large quantities of shelf-stable, reusable microstructures that are generally applicable to microscale studies of the interaction of cellular structures with defined microscale features.
منابع مشابه
Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers.
A novel method for the direct fabrication of arrays of micropatterned polymeric and carbon nanofiber structures on any substrate is developed. First SU-8, an epoxy-based negative photoresist, is electrospun under optimized conditions to produce a layer of polymeric nanofibers. Next, this nanofibrous mat is micropatterned using photolithography, and finally, pyrolysis produces ordered arrays of ...
متن کاملDevelopment of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering.
Native tissues present complex architectures at the micro- and nanoscale that dictate their biological function. Several microfabrication techniques have been employed for engineering polymeric surfaces that could replicate in vitro these micro- and nanofeatures. In this study, biomimetic surfaces of poly(butylene succinate) (PBS) were engineered by a micromolding technique. After the optimizat...
متن کاملA New Approach to Buckling Analysis of Lattice Composite Structures
Buckling strength of composite latticed cylindrical shells is one of the important parameters for studying the failure of these structures. In this paper, new governing differential equations are derived for latticed cylindrical shells and their critical buckling axial loads. The nested structure under compressive axial buckling load was analyzed. Finite Element Method (FEM) was applied to mode...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملBiomimetic materials and micropatterned structures using iniferters.
In the preparation of biomimetic materials it is often required that efficient methods of polymerization be used, often methods that can lead to biomimetic polymers with relatively narrow molecular weight distribution. Living radical polymerization techniques have successfully been used to create low polydispersity linear polymers by free-radical polymerizations. Although this technique slows d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2005